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Abstract

The objectives of the present study were to evaluate the discriminating power of spirometric

and plethysmographic lung function parameters to differenciate the diagnosis of asthma,

ACO, COPD, and to define functional characteristics for more precise classification of

obstructive lung diseases. From the databases of 4 centers, a total of 756 lung function

tests (194 healthy subjects, 175 with asthma, 71 with ACO, 78 with COPD and 238 with CF)

were collected, and gradients among combinations of target parameters from spirometry

(forced expiratory volume one second: FEV1; FEV1/forced vital capacity: FEV1/FVC; forced

expiratory flow between 25–75% FVC: FEF25-75), and plethysmography (effective, resistive

airway resistance: sReff; aerodynamic work of breathing at rest: sWOB), separately for in-

and expiration (sReff
IN, sReff

EX, sWOBin, sWOBex) as well as static lung volumes (total lung

capacity: TLC; functional residual capacity: FRCpleth; residual volume: RV), the control of

breathing (mouth occlusion pressure: P0.1; mean inspiratory flow: VT/TI; the inspiratory to

total time ratio: TI/Ttot) and the inspiratory impedance (Zin
pleth = P0.1/VT/TI) were explored.

Linear discriminant analyses (LDA) were applied to identify discriminant functions and clas-

sification rules using recursive partitioning decision trees. LDA showed a high classification

accuracy (sensitivity and specificity > 90%) for healthy subjects, COPD and CF. The accu-

racy dropped for asthma (~70%) and even more for ACO (~60%). The decision tree

revealed that P0.1, sRtot, and VT/TI differentiate most between healthy and asthma (68.9%),

COPD (82.1%), and CF (60.6%). Moreover, using sWOBex and Zin
pleth ACO can be discrimi-

nated from asthma and COPD (60%). Thus, the functional complexity of obstructive lung

diseases can be understood, if specific spirometric and plethysmographic parameters are

used. Moreover, the newly described parameters of airway dynamics and the central control

of breathing including Zin
pleth may well serve as promising functional marker in the field of

precision medicine.
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Introduction

There is an ongoing and growing interest in characterizing functional diversities by func-

tional traits within obstructive lung diseases such as asthma, different phenotypes of

chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) [1–11]. COPD is a

common, complex and heterogeneous disease, characterized by airflow limitation and an

increased inflammatory response of the lung [12]. Noteworthy, a substantial proportion of

patients show characteristics of both, asthma and COPD, referred to as the asthma–COPD

overlap (ACO) [13–22]. Although a significant individual heterogeneity within COPD is

well-known reflecting divers clinical patterns by different physiological mechanisms, endo-

types and phenotypes [23], it is yet not possible to predict morbidity and mortality from the

degree of lung function impairment in COPD [4]. CF is a severe, monogenic, autosomal

recessive disease, caused by mutations in the cystic fibrosis transmembrane conductance

regulator (CFTR) gene, where disturbed chloride and bicarbonate transportation in epithe-

lial cells results in a multiorgan disease with primarily pulmonary infections and pancreatic

insufficiency [24]. New therapies with CFTR modulators have shifted the previously symp-

tomatic treatment adjusted to the patients’ phenotype toward a genotype-specific treatment

in the sense of precision medicine [10, 24]. It is important to recognize, that these condi-

tions have differentiating features related to etiology, symptoms, type of airway inflamma-

tion, inflammatory cells and mediators, consequences of inflammation, response to

therapy, and disease course. Therefore, a more targeted and holistic management has been

claimed [4].

Precision medicine as an approach for tailoring disease treatment and prevention, is

hoped to be the future of asthma, COPD and CF, enabling sub-classification as diagnostic,

prognostic, or predictive response characteristics [1–10]. To focus on the definition of func-

tional traits, such as biomarkers [1, 6], changes in the extracellular matrix [7], imaging

modalities, prediction rules, and genetic factors, has already been proposed. However, in

COPD, functional parameters defining the pathophysiologic processes are mainly based on

spirometric parameters, predominantly on FEV1 [25]. Surprisingly, there are only a limited

number of studies, especially also no clinical trials, integrating plethysmographic parameters,

and there is a lack of comparative parameters in the assessment of obstructive lung diseases

on a same level of extended lung function testing, how it was performed previously for moni-

toring chronic lung diseases [26–29]. Having already demonstrated the discriminative power

of certain traits in COPD [30–33], and patients with CF [34, 35], we intended to search for

the discriminating power of further parameters, obtained by the airway resistance (sRaw)

loop. Fig 1 shows a sRaw-loop consisting of the plethysmographic shift volume (Vpleth) and

the tidal flow (V’) plot, obtained in a patient with COPD. Noteworthy, aerodynamic parame-

ters, such as sWOB and sReff could also be computed for the inspiratory and expiratory part

of the breathing cycle separately giving parameters such as sWOBin, sWOBex, sReff
IN, and

sReff
EX.

Based on the plea for the use of independent discriminatory parameters by Lopez and Cen-

tanni [9], and the new concept of “artificial intelligence” proposed by Topalovic et al. [26], the

present study was designed with the aim of highlighting and comparing the various functional

factors, and the physiological complexity within and between asthma, ACO, COPD and CF,

using an extended set of spirometric and plethysmographic parameters in a multivariate

approach, thus enabling the identification of functional traits within these diagnosis of

obstructive pulmonary diseases.
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Material and methods

Study design and ethics

In the present study, we refer on retrospectively evaluated data obtained from four Swiss cen-

ters (University Children’s Hospital, Bern; Center of Pulmonary Diseases, Hirslanden Hospital

Group, Salem-Hospital, Bern Switzerland; Clinic of Pneumology, Cantonal Hospital

St. Gallen, Switzerland; Center of Pulmonology, Hirslanden Hospital Group, Clinic Hirslan-

den, Zürich, Switzerland), tested between 2006 and 2016. The patients have been referred to

the centers for extended pulmonary function testing and optimizing therapy. Data were

exported from the database systems of each clinic subdivided into 5 diagnostic classes: (i)
healthy controls (ii) bronchial asthma, (iii) COPD, including a group of patients with (iv)

COPD with coexisting asthma, (ACO), and (v) cystic fibrosis (CF), exported between 2018–

2022. Authors had no access to information that could identify individual participants during

or after data collection. The anamnestic, clinical features, and the diagnosis for each patient

was made by trained pediatric and adult pulmonologists based on history-taking, chest radio-

graphs, high-resolution CT scans, spirometry, whole-body plethysmography, and measure-

ment of the fraction of exhaled nitric oxide (FeNO); additional detail regarding how the

clinical diagnoses have been established previously given [32, 33].

The study was planned according to the Federal Law of Human Research, conceptualized

according to the Swiss Ethics Committees on research involving humans, and approved by the

Fig 1. Aerodynamic parameters computed by integrals from a plethysmographic shift volume—Tidal flow loop (sRaw-loop) obtained from a patient with

COPD, separated into the inspiratory and expiratory area of the loop. (Vpleth: plethysmographic shift volume; EELV: end-expiratory lung volume. FRCpleth:

functional residual capacity; ΔV0: difference between inspiratory and expiratory shift-volume at FRCpleth; sWOB: resistive aerodynamic work of breathing; sReff:

effective specific airways resistance; sWOBin: resistive aerodynamic work of breathing integrated from the inspiratory part of the Raw-loop; sWOBex: resistive

aerodynamic work of breathing integrated from the expiratory part of sRaw-loop; sReff
IN: inspiratory, effective specific airways resistance; sReff

EX: expiratory, effective

specific airways resistance).

https://doi.org/10.1371/journal.pone.0292270.g001
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Governmental Ethic Committees of the States of Bern, St. Gallen and Zürich (Project KEK-BE

PB_2017–00104). Master-files haven been stored and secured in the Clinical Trial Unit (CTU),

Hirslanden, Corporate Office, CH-8152 Glattpark, Switzerland, and all relevant data are within

the manuscript and its Supporting Information files.

Patient’s cohort and differential diagnosis

From the database of the four centers 756 measurement-sets of 194 healthy subjects, 175 with

asthma, 71 with ACO, 78 with COPD and 238 with CF were collected. COPD was defined by a

history of smoking (current or ex-tobacco smokers), or equivalent indoor/outdoor air pollu-

tion, with chronic cough, sputum and dyspnea, previously documented persistent airflow limi-

tation with post-bronchodilator values of the FEV1/FVC < 70% and the FEV1 < 80%, not fully

reversible with a bronchodilator [36–38]. Asthma was diagnosed based on a past history of

atopy and/or allergies with symptoms such as wheezing, shortness of breath, chest tightness

and cough that vary over time in their occurrence, frequency, and intensity, and proven bron-

chial hyperreactivity (BHR) [13], or a positive bronchodilation test [39]. ACO was diagnosed

when the subject had features of COPD and asthma, with documented bronchodilator

response in a FEV1 > 12% and 200 mL [13, 21, 22, 40, 41]. Patients with CF were recruited

from the Bernese Cystic Fibrosis Data Base [34, 42, 43], regularly seen at the outpatient clinic

of the Department of Paediatrics. The diagnosis of CF was based on characteristic phenotypic

features [44], confirmed by a duplicate quantitative pilocarpine iontophoresis sweat test mea-

suring both Na and Cl values> 60 mEq/L, as well as by genotype identification using extended

mutation screening [45, 46]. Additional regarding genotype analysis are given in the support-

ing information captions (S1: Genotype analysis in S1 File).

Pulmonary function procedures

In all 4 centers the same type of a constant-volume whole-body plethysmographs (Master

Screen Body, Jaeger Würzburg, Germany) were used by standard techniques according to

ATS-ERS criteria [47–50] and revised Swiss guidelines [51]. The exported data were obtained

from the same system software (JLAB, vers. 5.2, SentrySuite vers. 1.29 resp.). Inclusion criteria

were reproducible base-line measurements with a) at least 5 shift volume-tidal flow loops of

comparable shapes, b) especially closed at zero flow points, c) closed inspiratory part in the

shift volume-tidal flow loops. All parameters were assessed in absolute values, as percentage of

predicted normal values, and z-scores according to normative equations recently used [52, 53],

and additionally given in the supporting information captions (S1: Pulmonary function proce-

dures in S1 File). Apart from the extension of parameters obtained by the sRaw-loop, we found

it important to introduce also parameters defining the control of breathing. As initially worked

out by Whitelaw et al. [54], the respiratory drive (P0.1) was measured by means of a mouth

occlusion pressure measurement 100 ms after inspiration as automatic occlusion response

during tidal breathing. This makes the P0.1 effort-independent, reproducible, and minimizes

vagal influences because pressure swings do not lead to corresponding changes in volume [56].

Since it starts from end-expiratory lung volume (EELV), any drop in P0.1 is independent of the

recoil pressure of the lung or thorax and airway resistance because the flow is interrupted [55].

Moreover, effective inspiratory impedance defined as product of P0.1 and the ratio between VT

and the inspiratory time (TI) was calculated [56, 57].

The content of the sRaw-loop presented in the shift volume (Vpleth)—tidal flow (V’)—plot

(Fig 1) seems to be rather complex, especially in patients with COPD. The sRaw-loop shows the

typical pattern of a golf club in the expiratory limb, which is a sign of airflow limitation in the

peripheral airways. The sReff-approximation of the sRaw-loop and its reciprocal value, the
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effective, resistive airway conductance (sGeff), were proven to be target parameters reflecting

small airways function [8, 26–28]. Details regarding the historical evolution how airway resis-

tances can be calculated and hence computed are given in the supporting information captions

(S2: Assessment of airway dynamics in S1 File). For all these parameters normative equations

and values predicted could be computed [58]. They are given in details in the supporting infor-

mation captions (S4: Defining predictive equations of airway dynamics in S1 File).

Statistical approach and parameter modelling

The distribution of all parameters presented as age- and gender-corrected z-scores is reported.

Two-sided tests with a type-I error α = 5% were used. P-values under 0.05 were considered as

statistically significant. There were 5 diagnostic classes (healthy, asthma, ACO, COPD and CF)

to be discriminated. Partly based on our former experience [33], parameters were grouped

within categories including (i) static lung volumes (TLC, FRCpleth, RV), (ii) breathing pattern

(VT, VT/FRC), (iii) airway dynamics (sWOB, sWOBin, sWOBex, sReff, sReff
IN, sReff

EX, sRtot),

(iv) forced spirometry (FEV1, FVC/FEV1, FEF25-75), (v) control of breathing (P0.1, VT/TI, TI/

Ttot), and (vi) effective inspiratory impedance (Zin
pleth).

Principal component analyses (PCA) were used to explore the variance present in our data

set. Linear discriminant analysis was performed to explore the inter-class variability, and func-

tions discriminating between the 5 diagnoses were identified. A confusion matrix summariz-

ing the classification accuracy of lung functions after leave-one-out cross-validation was

created. Wilks’s lambda (Λ) test statistics was used for refined variable selection. Conditional

inference recursive partitioning trees were built and the importance of the different functional

parameters across the diagnostic classes was estimated using a resampling-based performance

procedure. All analyses were done using the IBM SPSS software (version 29.0; SPSS Inc., Chi-

cago, IL), and the R statistical software, version 4.1.2 (R Statistics, Vienna, Austria), together

with the extension packages MASS, FactoMineR, caret, rpart and ade4.

Results

The anthropometric data of the healthy subjects and the patients within the 5 diagnostic classes

are described in Table 1. There is a certain imbalance of the numbers, especially rather few

COPD because of lacking parameters. Due to the circumstance CF is diagnosed shortly after

birth [59], the mean age of CF patients was significantly lower compared with the other

collectives.

Assessment of functional deficits

As advocated recently, the use of individual z-scores was applied to assess severity instead of

percentage predicted values, especially if lung function data within several diagnostic classes

and different functional severities are assessed over a longer age range [60–62]. By that

between-subject, age- and growth-related variability of the distribution of the reference popu-

lation is considered (Table 1). Regarding potentially discriminating parameters between the

diagnostic classes using the F-statistic of ANOVA, highest mean differences were obtained by

sWOBex (ACO vs. COPD: -22.5 SDS; p<0.001, COPD vs. CF: 21.3 SDS; p<0.001) followed by

Zin
pleth (COPD vs. CF: -21.1SDS) and sWOBin (ACO vs. COPD: -18.3 SDS; p<0.001, COPD

vs. CF: 15.4 SDS; p<0.001). Regarding distinction between Asthma and ACO high mean dif-

ferences were found for Zin
pleth (9.2 SDS) and sWOBex (8.6 SDS). FEV1 expressed in % pred.

presented with high mean differences between ACO and COPD (31.1 SDS; p<0.001) and

between COPD and CF (-13.9 SDS). However, if presented in z-scores, the mean differences

were not significant different (Table 1).
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Linear discriminant analysis (LDA)

Parameters specified into 5 categories including (i) static lung volumes (TLC, FRCpleth, RV,),

(ii) breathing pattern (RR, VT, VT/FRC), (iii) airway dynamics (sWOB, sWOBin, sWOBex,

sReff, sReff
IN, sReff

EX, sRtot), (iv) forced spirometry (FEV1, FVC/FEV1, FEF25-75), and (v) con-

trol of breathing and inspiratory impedance (P0.1, VT/TI, TI/Ttot, Zin
pleth) were used to per-

form a LDA. Table 2 shows that there was a very high classification accuracy (sensitivity and

Table 1. Anthropometric data within the collectives of the healthy subjects and patients with obstructive lung diseases, and group means of each lung function

parameter expressed as z-scores.

Healthy Asthma ACO COPD CF All Mean Diff.

Asthma vs. ACO

Mean Diff.

ACO vs. COPD

Mean Diff.

COPD vs. CF

Measurements n (% total) 194 (25.7) 175 (23.1) 71 (9.4) 78 (10.3) 238 (31.5) 756 (100)

Gender (male/female), n 83/113 47/126 36/34 39/40 123/115 331/431

Age (mean in years)

min / max

39.3±20.1

5.9 / 85.7

42.3±20.1

6.7 / 83.6

55.4±18.0

18.2 / 87.2

69.8±9.8

38.4 / 92.2

13.4±5.6

5.1 / 31.4

36.6±24.0

5.1 / 92.2

13.0

p<0.001

-15.1

p<0.001

56.8

p<0.001

BMI (mean in kg/m2)

min / max

23.4±4.1

12.9 / 29.9

25.1±4.8

14.4 / 38.3

25.5±4.2

19.2 / 37.7

26.1±5.6

14.3 / 45.7

17.2±2.2

12.2 / 24.3

22.3±5.4

12.2 / 45.7

-.05

n.s.

-0.4

n.s.

8.9

p < .001

Spirometry

FEV1 z-score ±SD

min / max

0.0±0.9

-1.9 / 2.6

-0.5±1.0

-2.9 / 2.4

-1.0±1.2

-3.0 / 1.6

-2.8±1.2

-4.7 / -0.3

-2.6±1.2

-7.9 / 1.4

-1.3±1.9

-7.89 / 2.7

-0.6

p<0.05

1.7

p<0.001

-0.2

n.s.

FEV1% pred ±SD

min / max

100.7±11.5

79.6 / 135.9

94.5±12.4

62.8 / 127.8

86.8±16.2

60.4 / 127.5

55.8±17.4

31.8 / 94.7

69.8±24.2

19.2 / 125.3

83.6±23.5

19.2 / 135.9

7.7

p<0.02

31.1

p<0.001

-13.9

p<0.001

FEV1/FVC z-score ±SD

min / max

-0.6±0.1

-1.8 / 5.0

-0.4±0.1

-4.0 / 2.3

-1.3±0.1

-4.1 / 3.4

-1.2±0.1

-7.4 / 0.6

-1.2±0.1

-8.8 / 2.5

-0.8±0.1

-8.8 / 9.0

0.4

n.s

0.5

n.s.

-0.1

n.s.

FEF25-75 z-score ±SD

min / max

0.3±0.1

-1.9 / 2.7

-0.4±0.1

-2.4 / 1.7

-.08±0.1

-3.2 / 0.4

-1.5±0.1

-3.4 / 0.4

-2.1±0.1

-5.2 / 1.4

-0.9±0.1

-5.2 / 2.7

0.5

n.s.

0.6

p<0.05

0.7

p<0.001

Airway Dynamics

sWOB z-score ±SD

min / max

0.0±0.1

-2.3 / 2.0

2.6±0.4

-2.8 / 18.8

7.1±0.5

-1.5 / 17.8

15.4±0.5

4.77 / 22.80

6.2±0.3

-2.4 / 17.5

4.81±0.2

-2.8 / 22.8

-4.5

p<0.001

-8.3

p<0.001

9.3

p<0.001

sWOBin z-score ±SD

min / max

-0.0±0.1

-2.1 / 2.3

2.4±0.4

-8.4 / 26.1

5.6±0.6

-9.4 / 18.7

23.0±0.9

4.3 / 41.9

8.5±0.5

-7.7 / 30.9

6.2±0.3

-9.4 / 41.9

-3.2

p = 0.02

-18.3

p<0.001

15.4

p<0.001

sWOBex z-score ±SD

min / max

0.0±0.1

-3.8 /2.2

6.8±8.7

-5.6 / 39.2

15.±7.6

0.3 / 34.3

37.9±9.5

15.1 /55.4

16.6±9.7

-2.0 /41.4

12.2±13.5

-5.6 / 55.4

-8.6

p<0.001

-22.5

p<0.001

21.3

p<0.001

sReff z-score ±SD

min / max

-0.0±0.1

-1.9 / 2.0

3.3±0.3

-1.9 / 22.0

6.2±0.4

-1.7 / 14.6

15.7±0.6

3.3 / 24.6

10.4±0.3

-0.6 / 21.7

6.2±0.2

-1.9 / 24.6

-3.0

p<0.001

-9.5

p<0.001

5.3

p<0.001

sReff
IN z-score ±SD

min / max

0.1±0.1

-1.8 / 1.8

8.2±1.4

-17.5 / 62.2

24.7±2.5

-13.9 / 76.1

81.7±33.2

9.0 / 125.0

47.0±1.8

-18.1 / 115.3

27.4±1.2

-18.1 / 125.0

-6.5

p<0.001

-10.7

p<0.001

6.9

p<0.001

sReff
EX z-score ±SD

min / max

0.01±0.01

-1.9 / 2.0

2.0±3.6

-3.7 / 14.3

3.8±4.4

-3.0 / 16.5

16.0±6.6

1.1 / 25.7

11.6±5.9

-1.9 / 26.0

6.1±7.3

-3.7 / 26.0

-1.8

P = 0.05

-12.2

p<0.001

4.3

p<0.001

sRtot z-score ±SD

min / max

0.0±0.9

-1.7 / 1.7

3.0±2.5

-2.5 / 13.5

4.8±3.0

-2.3 /13.5

15.4±3.7

5.8 / 22.5

8.5±4.1

-1.9 / 20.1

5.4±5.6

-2.5 / 22.5

-1.8

p<0.001

-10.7

p<0.001

6.9

p<0.001

Control of breathing

P0.1 z-score ±SD

min / max

-0.0±0.9

-2.0 / 2.1

3.1±6.7

-8.9 / 22.3

10.5±9.1

-8.2 / 28.4

12.2±8.8

-7.4 / 26.4

18.1±5.7

6.2 / 28.6

8.6±9.6

-8.9 / 28.6

-7.42

p<0.001

-1.75

p<0.001

-5.78

p<0.001

VT/TI z-score ±SD

min / max

-0.1±0.9

-1.9 / 1.8

1.3±3.4

-5.7 / 11.3

3.6±4.8

-3.8 / 15.5

3.5±3.9

-3.4 / 12.1

-1.3±2.9

-6.5 / 15.5

0.6±3.4

-6.5 / 15.5

-2.25

n.s

0.11

n.s.

4.70

p<0.001

Inspir. Impedance

Zin
pleth z-score ±SD

min / max

0.0±1.0

-1.8 / 2.0

3.9±9.8

-8.9 / 45.0

13.2±13.2

-10.2 / 45.1

16.8±14.7

-9.9 / 49.1

37.8±20.8

3.4 / 11.2

15.8±21.1

-10.2 / 11.2

-9.2

p<0.001

-3.6

n.s.

-21.1

p<0.001

End-expiratory Level

FRCpleth z-score ±SD

min / max

0.5±0.5

-.8 / 1.8

0.6±0.9

-1.5 / 3.1

1.1±1.0

-1.0 / 3.8

2.9±1.2

0.0 /5.0

1.9±1.5

-1.8 / 6.4

1.3±1.4

-1.8 / 6.4

-0.5

p<0.02

-1.8

p<0.001

1.0

p<0.001

https://doi.org/10.1371/journal.pone.0292270.t001
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specificity > 95%) for healthy, COPD and CF. The sensitivity was lower in patients with

Asthma (ca. 70%) and even lower in ACO (ca. 60%). ACO was the most difficult diagnostic

category to be classified. A linear discriminant analysis based on all the 16 parameters is

graphically represented in Fig 2, showing that the first function discriminates between

healthy and CF, whereas the second function depicts a gradient discriminating gradually

healthy, asthma, ACO and COPD. The overall prediction accuracy was 87% (healthy: 96%,

asthma: 82%, ACO: 78%, COPD: 97% and CF: 97%). Comparing COPD with CF, mean dif-

ferences were: P0.1 lower (-5.78 SDS; p < .001), VT/TI higher (4.70 SDS; p < .001), inspira-

tory impedance (Zin
pleth = P0.1/VT/TI) lower (-21.07 SDS; p < .001), FRCpleth higher (.97

SDS, p < .001), and FEF25-75 lower (-.68 SDS; p < .001).

The most striking parameters differentiating between these diagnostic classes are shown in

Fig 2. Using all 16 lung function parameters the 5 diagnostic classes could be differentiated

with an overall prediction accuracy of 86% (healthy: 97%, asthma: 65%, ACO: 70%, COPD:

95% and CF: 93%). Fig 2 demonstrates in the discriminant analysis a most pronounced differ-

ence between COPD and CF. Based on Wilks’s lambda (Λ) test statistics 5 parameters sRtot (Λ
= 0.332), FEF25-75 (Λ 0.321), sReff

EX (Λ = 0.313) sWOBex (Λ = 0.302), and P0.1 (Λ = 275) dis-

criminated between COPD and CF in 96, 98% respectively. On the other hand, ACO which is

the most discussed subtype of COPD could be discriminated against asthma and COPD with a

group membership prediction of 76%.

Conditional inference tree

A conditional interference tree was built to investigate discriminating lung function

parameters and defined classification rules to differentiate between healthy subjects,

patients with asthma, ACO, COPD, and CF. The recursive partitioning trees are shown in

Fig 3. Independent parameters P0.1, sRtot, VT/TI FEV1/FVC, P0.1 and sReff
EX expressed in z-

scores were selected. In Fig 3A decision tree was built with all subjects. P0.1 was the most

significant parameter stratifying the 756 measurements within the 5 subject groups. If P0.1

was � 6.15 and sRtot > 1.69 asthmatics could be differentiated from healthy subjects in

68.9% (Node 4), 79.5% resp. (Node 3). If P0.1 was > 6.15 and VT/TI � 0.92 CF could be dif-

ferentiated in 82.6% (Node 5) from the group of COPD phenotypes. If apart from P0.1 >

6.15 and VT/TI � 0.92 sRtot > 10.28 COPD could be distinguished from ACO, however

only in 36.8% (node 7). If admittedly for the decision between asthma, ACO and COPD

sWOBex and Zin
pleth are used as shown in Fig 3B, then ACO can be distinguished in 60%

from asthma (node 5). The decision tree reveals that P0.1, sRtot, VT/TI, sWOBex and Zin
pleth

presented as significant functional traits differentiating between these different obstructive

lung diseases.

Table 2. Classification accuracy for healthy, asthma, ACO, COPD and CF according to a linear discriminant analysis (LDA) based on 16 lung function parameters.

Healthy Asthma ACO COPD CF

Sensitivity 0.9691 0.7086 0.5916 0.9359 0.9580

Specificity 0.9484 0.9398 0.9635 1.0000 0.9768

Pos. pred. value 0.8664 0.7799 0.6269 1.0000 0.9500

Neg. pred. value 0.9889 0.9146 0.9579 0.9927 0.9806

Prevalence 0.2566 0.2315 0.0939 0.1032 0.3148

Balanced Accuracy 0.9578 0.8242 0.7775 0.9680 0.9674

Accuracy: 0.87; 95% CI (0.84, 089); Kappa: 0.82

https://doi.org/10.1371/journal.pone.0292270.t002
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Parameter-rating across the diagnostic classes

The variable importance was calculated based on a random cross-validation procedure follow-

ing the conditional inference tree analysis. Table 3 shows the importance of the different func-

tional parameters across the diagnostic classes. There were 16 lung function parameters which

prompted as potential discriminators. The central respiratory drive P0.1, the mean inspiratory

flow VT/TI, the plethysmographic sReff
EX and sRtot, as well as the sWOBex qualify as the 5 best

discriminating determinants of the functional pattern of the four diseases studied. The best

rated spirometric parameter was FEF25-75 on place 7, followed by FEV1 on place 10 and the

FEV1/FVC ratio on place 14.

Fig 2. Linear discriminant analysis (LDA): First function discriminates between healthy and CF, whereas the second function depicts a gradient discriminating

gradually healthy, asthma, ACO and COPD, based on 16 lung function parameters selected by MANOVA.

https://doi.org/10.1371/journal.pone.0292270.g002
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Fig 3. Decision-trees differentiating between healthy, asthma, ACO, COPD, CF involving all 16 lung function parameters, (left-hand part

A) and differentiating asthma, ACO and COPD involving sWOBex, and Zin
pleth (right-hand part B).

https://doi.org/10.1371/journal.pone.0292270.g003

Table 3. Parameter-rating across the 4 diagnostic groups of 16 lung function parameters prompting as potential discriminators.

Parameter Asthma ACO COPD CF

1 P0.1 79.8 24.3 32.2 100.0

2 VT/TI 23.8 43.4 34.7 62.0

3 sReff
EX 36.5 19.5 29.4 61.1

4 sRtot 42.2 33.5 53.0 33.8

5 sWOBex 37.4 24.0 49.6 33.2

6 sWOB 39.2 33.6 42.1 48.4

7 FEF25-75 28.9 9.0 30.3 47.3

8 sWOBin 31.2 29.2 45.5 19.3

9 TI/Ttot 10.3 14.4 42.8 30.4

10 FEV1 42.3 12.2 24.7 38.6

11 FRCpleth 41.2 8.4 19.2 19.7

12 sReff 40.1 23.8 34.6 40.1

13 sReff
IN 38.3 7.0 31.9 31.2

14 FEV1/FVC 20.8 7.5 14.8 30.7

15 RV 20.8 15.2 24.3 10.3

16 TLC 13.0 20.1 22.2 14.9

https://doi.org/10.1371/journal.pone.0292270.t003
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Discussion

Although COP, ACO and CF have some phenotypically associated clinical features such as

chronic airway inflammation, recurrent infectious exacerbations, mucus hypersecretion, and

impaired mucociliary clearance, they also share some key functional features such as progres-

sive airflow obstruction, pulmonary hyperinflation, trapped gases and gas exchange distur-

bances, and hence that may suggest the existence of common mechanisms [63–66]. All three

diseases have always been treated as unrelated, distinct entities. However, there is sparse

knowledge regarding similarities or specific functional patterns distinguishing these diseases.

Functional hallmark of all the four diseases, asthma, ACO, COPD and CF is the airway

obstruction. The parameters of airway dynamics obtained by integration of the plethysmo-

graphic sRaw-loop measured during tidal breathing featuring sWOB and sReff, have already

shown specific predictive power regarding bronchodilator response [32], onset and progres-

sion of disease in patients with sub-phenotypes of COPD [30–33], and in patients with CF [42,

43]. The present study, however, demonstrates, that further information can be gained from

this sRaw-loop, if the expiratory area is selectively evaluated from the inspiratory area.

Findings of the present study

The main findings of the present study are that apart from the central respiratory drive P0.1

and sRtot, parameters such as sWOBex and sReffEX qualify as discriminating determinants of

the functional pattern of the four diseases studied (Table 2). It implies that these parameters

may feature important trajectories for differentiating specific functional patterns of obstructive

lung diseases, and could be introduced as treatable traits in future concepts of “artificial intelli-

gence” [3–5, 11, 67]. In this way, subclassification could be strengthened as diagnostic, prog-

nostic, or predictive response characteristics toward precision medicine for patients with

obstructive lung diseases.

Peripheral airway dysfunction

Mahut et al. suggested that sRtot and sReff can be considered as equivalent and correlated with

indices that are considered to explore peripheral airways, and that these two parameters are

statistically linked to activity-related dyspnea in COPD [31]. The open shape of the sRaw-loop

is related to changes in the elastic recoil pressure and collapse during quiet tidal breathing due

to the changes in airway obstruction visible between inspiratory and expiratory flow. The

shape also indicates unequal ventilation of the lung areas, which is a typical early sign of a pul-

monary disease. Moreover, we have previously shown that the area of the sRaw-loop is related

to the flow-resistive work of breathing sWOB [32], which may explain its correlation with

activity-related dyspnea, as demonstrated by Mahut et al. [31]. The parameter sReff is an out-

standing descriptor of lung function as it incorporates airways resistance and volume compo-

nents that may be related to the viscoelastic behavior of the lung. In patients with COPD,

inhomogeneity of ventilation within the small airways causes the opening of the sRaw-loop due

to expiratory flow limitation and/or dynamic airway compression, being clearly linked to

activity-related dyspnea [68]. The same phenomenon is also found in patients with CF. There-

fore, sReff and sRtot represent surrogates of activity-related dyspnea in moderate to severe

obstructive pulmonary diseases. The present study demonstrates that beyond sWOB and sReff

much more information can be found if the integrated data of the sRaw-loop are analyzed for

the inspiratory and expiratory limb separately. Especially sWOBex and sReffEX are important

discriminative lung function parameters. The disposition of normative reference equations

transitional applied over a wide age range are prerequisites for studies of predicting disease
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progression in asthma, subtypes of chronic obstructive pulmonary diseases (COPD) and cystic

fibrosis (CF).

There is growing interest in recognizing specific functional patterns by standardized inter-

pretation of pulmonary function tests in the diagnosis of respiratory diseases, built on expert

opinions within a concept of precision medicine [1, 4, 10, 23, 25, 67]. Recently, Topalovic et al.

reported artificial intelligence-based software significantly improving clinical practice for pow-

erful decisions to distinguish different respiratory diseases [67]. Apart from parameters repre-

senting inspiratory and expiratory parts of the sRaw-loop, we thought it worthwhile to include

parameters of the control of breathing (P0.1, VT/TI, and TI/Ttot) in such a multivariate discrim-

inating model. Moreover, the airway dynamics parameters were specifically split for those rep-

resenting the inspiratory and expiratory parts of the sRaw-loop. Depending on which

parameter set is used, the four diagnoses can be distinguished fro healthy subjects with an

overall prediction accuracy of 86%. Most pronounced difference was found between COPD

and CF with a prediction accuracy of 99.7%. Finally, ACO, the most discussed subtype of

COPD, was distinguished from asthma and COPD with a prediction accuracy of 76%.

Limitations and strengths of the study

Several limitations need to be mentioned: The present study is a retrospective evaluation of

lung function data obtained by various parameters and there are no longitudinal observations,

a feature that can only be achieved by a prospectively designed study. Our actual challenge was

to find surrogate markers superior to the conventual spirometric parameters, significantly

helping in the differentiation between COPD and CF. As it turned out, such an evaluation

based on various functional parameters of extended airway dynamics revealed a variety of fun-

damentally different archetypes.

The main limitation of our study is, that it addresses functional trajectories representing the

complex lung physiology in COPD and CF, not directly linked to clinical settings. However,

the aerodynamic specific work of breathing at rest (sWOB) features presumably the closest

parameter associated with clinical signs such as wheezing, shortness of breath, chest tightness

and cough, and could well be taken as a marker for longitudinal follow-up and treatment effi-

cacy. Other limitations are the relatively small number of subjects per center and within the

sub-groups of COPD. However, there were no differences when the data of the patients with

asthma, ACO and COPD of the 3 centers (LZB, LZH, KSSG) were compared to one another

given in the supporting information captions (S5: S1 Table in S1 File). Therefore, the popula-

tion-based retrospective nature of our study and its highly standardized multicenter frame-

work has reliable power.

The strengths of the present study are that we enlarged the possibilities of plethysmographic

target parameters, differentiating between parameters obtained from the inspiratory versus

expiratory part of the sRaw-loop, allowing to examine the interrelationships between several

facets of lung function trajectory within these diseases. In addition, our model was flexible in

that it allowed changes in lung function, expressed as z-scores, to vary over time between dif-

ferent classes of lung function trajectories.

Conclusions

Given the functional, structural, and biological heterogeneity in patients with subtypes of

COPD and CF, we anticipate, that there is considerable interest in assessing the differences

between these diseases, using a set of functional target parameters. By such an approach flow

limitation, airway dynamics, small airways dysfunction and the control of breathing can inter-

actively be evaluated, assessing specifically the complex diagnostic-class-specific functional
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deficits. The summary of the various functional defects, their combination and their interac-

tions underscore the heterogeneous physiological mechanisms of these diseases. Extended

lung function testing could presumably help in tracking dynamics and changes over time in

view of specific disease burden, and a more sophisticated assessment of functional deficits and

their reversibility would be justified. There are unquestionably several subtypes of COPD that

are clinically distinct from those of CF. Moreover, it has clearly been shown that the prognosis

in CF largely depends on the patients’ genotype, and hence on the residual function of CFTR.

Since there are significant differences not only between COPD and CF, but also between the

different subtypes, the clinical behavior of patients varies, requiring the definition of a differen-

tiated treatment strategy in terms of precision.
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