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Abstract

Background: Stroke is a major cause of disability and stroke incidence increases with age. Stroke frequently results
in permanent limitations of mobility, and, consequently, the need for the help of others in activities of daily living.
In order to optimize rehabilitative efforts and their functional outcomes, detailed knowledge of the functional
recovery process, regarding mobility, is needed. Objectives of the MOBITEC-Stroke study are: 1.) To characterize
mobility, including lower extremity physical function (LEPF) and life space (the geospatial extent of all of a person’s
movements), and changes in mobility within the first year after stroke. 2.) To identify and characterize subgroups
with different mobility trajectories. 3.) To evaluate whether changes in LEPF are associated with changes in life-
space. 4.) To evaluate participants’ reasons for going outdoors, transportation use, and assistance needed for
outdoor movement.

Methods: Patients with incident first stroke who live in their own homes (target N = 59, based on sample size
calculation) will be included in this cohort study. At 3, 6, 9, and 12 months after stroke a battery of mobility tests
will be performed at the study centre, including laboratory-based tests of balance and strength, and quantitative
gait analysis. Life-space assessment (including 1-week GPS measurements) will be performed in participants’ real life.
Semantic information on visited locations (reasons for going outdoors, transportation use, assistance needed) will
be collected by using interactive digital maps. Linear mixed effects models will be used to model the trajectories of
mobility measures for the total sample and for predefined subgroups. As an exploratory analysis, growth mixture
models (GMMs) will be used to identify relevant subgroups with different trajectories. Linear mixed effect models
will be used to test whether changes in LEPF parameters are associated with changes in life-space. Participants’
motivation for going outdoors, transportation use, and assistance needed for outdoor mobility will be analysed
descriptively.
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Discussion: A comprehensive and detailed knowledge of recovery patterns will enable the planning of targeted
and adaptively tailored rehabilitation measures. Information about patients’ reasons for outdoor mobility will
provide the opportunity to define individualized and patient-oriented rehabilitation goals.

Trial registration: ISRCTN85999967 (on 13 August 2020; retrospectively).

Keywords: Aging, Mobility limitation, Walking speed, Quantitative gait analysis, Spatial behaviour, Quality of life,
Accelerometers, GPS, Cohort study

Background
Stroke is among the leading causes of mortality and ac-
quired long-term disability worldwide, its incidence in-
creases with age [1–5]. If survived, stroke often results in
permanent limitations of mobility [6]. “Mobility” has
been defined comprehensively as “the ability to move
oneself (either independently or by using assistive de-
vices or transportation) within environments that ex-
pand from one’s home to the neighbourhood and to
regions beyond” [7], (p. 444). Thus, measures that de-
scribe a person’s mobility include tests of “lower extrem-
ity physical function” (LEPF) (also referred to as
“mobility function” (e.g., [8]) [9], and assessments of
“life-space” [10]. So far, research on recovery of mobility
after stroke has mainly focused on function [11–15].
Reduced LEPF after stroke, initially attributed to the

brain lesion, leads to a vicious circle of sedentary behav-
iour [16], disuse muscle atrophy and weakness [17], fear
of falling, and falls [18]. It also results in lower health-
related quality of life [19], disability in basic activities of
daily living (ADL) and self-care [20], and consequently
need for personal assistance and institutional care [21].
So far, studies on LEPF in people after stroke mostly re-
lied on questionnaires or simple functional tests, the lat-
ter often including (subjective) therapist ratings [11–13,
15, 22]. More sophisticated and precise measures of
LEPF are, however, available, including instrumented as-
sessment of strength, balance, and gait (e.g. with dyna-
mometers, pressure sensitive walkways or body worn
accelerometers), allowing the disentanglement of the
exact components responsible for mobility limitation. In
contrast to most functional tests, these measures can
also account for the asymmetry, which is typical for
stroke patients [23, 24]. Rehabilitative measures to re-
store LEPF in people after stroke include physical ther-
apy, exercise (including training of balance, strength and
gait), and the provision of adaptive devices [25–27]. It
has previously been argued that there may be specific
therapeutic windows during stroke recovery in which
certain rehabilitative measures are likely to be most suc-
cessful [28, 29]. Besides the difficulty of applying the cor-
rect rehabilitative measures at the right time, the
patient’s adherence to the rehabilitative measures is cru-
cial. It has been shown that adherence to rehabilitative

measures in stroke patients already starts to decrease 6
weeks post-stroke and reaches its minimum 21 weeks
post-stroke [30]. Lack of motivation has been found to
be one of the main reasons for low adherence to exercise
in stroke patients [31]. As a majority of people after
stroke (75% of participants in a New Zealand study) con-
sider “the ability to get out and about in the community”
essential or very important shortly after returning to
their own homes [32], regaining the ability to independ-
ently move within one’s environment (i.e. extending the
life-space) might serve as a strong motivator for patients
to adhere to their rehabilitation plans.
Life-space, the “spatial extent in which a person moves

within a specified period” encompasses “the interaction
between intrinsic capabilities of the person and the de-
mands of the extrinsic environment” [33], (p. 155). In
the general older population, restricted life-space is pre-
dictive of disability in ADL [34], frailty [35], falls and
fractures [36], nursing home admission [37], and mortal-
ity [38]. Epidemiological studies usually rely on ques-
tionnaires to measure life-space (e.g., [10]), however,
they are prone to recall bias and their geospatial reso-
lution is low. Nowadays, Global Navigation Satellite Sys-
tems (GNSS), such as the Global Positioning System
(GPS), offer the chance to objectively and much more
precisely measure a person’s life-space [39, 40]. Add-
itional semantic information, e.g. on the purpose of visit-
ing a certain location, on the use of transportation, on
the need for personal assistance or on environmental fa-
cilitators of mobility, can be collected by interactive
digital maps [41–43]. Despite its relevance for personal
health and social interaction, life-space after stroke has
scarcely been examined: a single cross-sectional
questionnaire-based Korean study of 34 people after
stroke showed that life-space was positively associated
with functional ambulation and independence [44]. Lon-
gitudinal studies assessing life-space and social participa-
tion of stroke patients repeatedly at clearly defined time
periods after stroke and using objective measures of life-
space mobility are missing.
In summary, in order to be able to design individual-

ized rehabilitative measures for people after stroke and
to maximize their effectiveness, knowledge of the details
of stroke recovery (including timing and components)
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and of the association between LEPF and life-space dur-
ing the recovery process is urgently needed. This will
allow health care professionals to apply the correct re-
habilitative measures at the right time and at the optimal
dosage, and to estimate the degree of recovery that can
be achieved. The additional knowledge of why people
want to visit certain places and what enables them to get
there will allow therapists to define individualized treat-
ment goals with a focus on patient empowerment.

Methods and design
Objectives
This study has the following objectives:

1 To characterize mobility, including LEPF and life-
space, and changes in mobility within the first year
after stroke

2 To identify subgroups with different mobility
trajectories and describe the patient characteristics
for each subgroup

3 To evaluate whether changes in LEPF parameters
are associated with changes in life-space

4 To evaluate reasons for going outdoors,
transportation use and assistance needed

Design
MOBITEC-Stroke (“Recovery of mobility function and
life-space mobility after ischemic stroke”) is designed as
a prospective cohort observational study. Clinical evalu-
ation and follow-up as well as mobility measurements
will be performed at four time points: 3 (T0), 6 (T1), 9
(T2), and 12 (T3) months after stroke. Furthermore, clin-
ical information for the time of first admission to the

Stroke Centre will be available for all subjects (i.e.,
shortly after the event). Each measurement will consist
of a battery of tests conducted at the study centre (Basel
Mobility Center, Department of Geriatric Medicine Felix
Platter) as well as a subsequent 1-week measurement
with wearable sensors around participants’ homes
(Fig. 1).

Target group, inclusion criteria and exclusion criteria
Target group
The study targets ambulatory patients after first ische-
mic stroke living in their own homes following stroke.

Inclusion criteria
The study includes female and male patients from 18 years
of age with first ischemic stroke within the past 3months.
Participants must be able to communicate verbally with
the study personnel; they have to be able to understand
the study information and have to provide written in-
formed consent. At least one of the following stroke-
related symptoms potentially affecting gait and mobility
must be present: lower limb paresis or ataxia; stance/gait
ataxia (cerebellar or sensory); visual disturbance/field de-
fect; central vestibular deficit; attentional deficit/neglect.
Participants have to be able to get up from a chair and sit
down without external help and to walk for a minimum of
20m at their own pace, with or without pauses, with or
without a walking aid, but without the physical assistance
of another person (self-report).

Exclusion criteria
Persons who are community-dwelling, are unable to
walk without assistance, are wheelchair bound or

Fig. 1 Study timeline. Laboratory assessments of lower extremity physical function (LEPF) and subsequent ambulatory 1-week assessments of life-
space (LS) take place at 3, 6, 9 and 12 months after ischemic stroke
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permanently bedridden (modified Rankin Scale, mRS > 3
points) [45, 46], and persons with presence of severe
cognitive impairment (Montreal Cognitive Assessment
(MoCA) score < 21 or, < 20 for persons with 12 years of
education or less) [47, 48], an acute psychiatric disorder
(e.g. severe depression), or an advanced terminal illness
are excluded. Orthopaedic surgery of the lower extrem-
ities within the past year and on-going rehabilitation
measures following an inpatient surgical procedure at
the time of stroke are further exclusion criteria. Patients
with major pre-stroke mobility limitations (major
difficulties in walking or climbing stairs; self-report) are
also excluded. The usage of centrally acting drugs will
be documented but will not per se be an exclusion
criterion.

Recruitment
Participants will be recruited through the Department of
Neurology and Stroke Centre, University Hospital Basel
and the Department of Geriatric Medicine Felix Platter.
Eligible patients will be informed about the study and in-
vited to participate.

Measures
Participant characteristics
The following standardised information from first ad-
mission to the Stroke Centre (i.e., shortly after the event)
will be available for all subjects: sex, age, date, and time
of symptom onset or last proof of good health; date and
time of arrival at hospital; National Institutes of Health
(NIH) stroke scale [49] on admission and 24 h after ad-
mission; stroke localisation (brain region and vascular
territory affected); first brain imaging type (CT/MRI)
and result; etiology of ischemia; type of initial treatment;
date of hospital discharge and discharge destination.
The following additional participant characteristics will

be assessed by self-report at T0 (Table 1): years of educa-
tion and pre-stroke social support (regular company
when going outdoors and for errands) [50]. Body height
and leg length will be measured by a trained assessor.
The following characteristics will be assessed at T0

and at all follow-up visits (T1–3): body weight, financial
hardship, residential area (urban/suburban/rural), hous-
ing situation (type of housing, floor and availability of an
elevator), living condition (alone or with someone else),
social support (regular company when going outdoors
and for errands) [50] and instrumental activities of daily
living (IADLs) [51].
At T0 and at T3 all subjects will undergo a clinical-

neurological examination and the following characteris-
tics will be assessed: stroke severity (National Institutes
of Health Stroke Scale; NIHSS) [52], level of functional
independence (mRS) [45, 53] comorbidities (Self-Admin-
istered Comorbidity Questionnaire; SCQ) [54, 55] and

depressive symptoms (Geriatric Depression Scale; GDS-
15) [56, 57]. Health-related quality of life will be assessed
using the Stroke-Specific Quality of Life scale (SS-QoL);
total score as well as subscores will be calculated [58,
59]. Use of centrally acting drugs, vision problems, and
hearing problems will also be assessed by self-report.

Mobility
Assessments of mobility (the primary outcome of this
study) will take place at T0 and at all follow-up visits
(T1–3) (Table 1). In short, walking ability and perceived
mobility limitation will be assessed by self-report. LEPF
will be assessed by a battery of tests (including quantita-
tive gait analysis, tests of lower limb muscle power, bal-
ance tests and functional tests) in a given order at the
study centre. All tests will be performed by a trained as-
sessor. Life-space will be assessed by GPS and by self-
report questionnaire. Mobility assessments will be com-
plemented by an evaluation of reasons for going out-
doors, transportation use and need for assistance by
using a questionnaire tool that is based on digital maps.

Walking ability and mobility limitation
Pre-stroke (T0) and current (T0–3) walking ability (no
walking aid, cane or rollator) [60] and perceived pre-
stroke (T0) and current (T0–3) mobility limitations (diffi-
culties in walking and climbing stairs) [61] will be
assessed by self-report.

Quantitative gait analysis
Quantitative gait analysis will be performed by using a
pressure-sensitive electronic walkway (GAITRite, Plat-
inum version, active length 972 cm, CIR System Inc.,
Franklin, NJ, USA) [62–64] and body-worn inertial sen-
sors (Physilog 5, Gait Up SA, Lausanne, Switzerland)
[65]. Temporal and spatial gait parameters (e.g. walking
speed, cadence, stride time variability, stance time vari-
ability, double support time variability, step length, stride
length asymmetry, step width variability, stride length
variability, and stride time variability) will be derived
from a walk on the GAITRite walkway [66, 67]. Toe
clearance, as a potential indicator of tripping risk [68],
will be derived from the body-worn sensor data [69].
Participants will perform two additional 10 m walks on
the walkway under dual-task conditions (working mem-
ory task with serial subtraction and verbal fluency task
of naming animals) [70, 71]. Participants will be allowed
to use their usual walking aid during the walking tests
and they always walk at their habitual, comfortable
walking speed.

Lower limb muscle power
Lower limb muscle power (the product of the strength
and velocity of movement) will be assessed in a seated
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Table 1 Schedule of assessments

Assessment Recruit-
ment

T0 (3 months
after stroke)

T1 (6 months
after stroke)

T2 (9 months
after stroke)

T3 (12 months
after stroke)

Participant characteristics

Cognition (MoCA) x

Body height x

Leg length x

Body weight x x x x

Years of education x

Social support (incl. Pre-stroke) x x x x

Financial hardship x x x x

Residential area x x x x

Housing situation x x x x

Living condition x x x x

Instrumental activities of daily living (IADLs) x x x x

Clinical-neurological examination x x

Stroke severity (NIHSS) x x

Level of functional independence (mRS) x x

Comorbidities (SCQ) x x

Depressive Symptoms (GDS-15) x x

Health-related quality of life (SS-QoL) x x

Use of centrally acting drugs x x

Vison problems x x

Hearing problems x x

Mobility

Walking ability (incl. Pre-stroke) x x x x

Mobility limitations (incl. Pre-stroke) x x x x

Quantitative gait analysis (pressure sensitive walkway;
portable sensors)

x x x x

Lower limb muscle power (leg press) x x x x

Balance (force platform) x x x x

5 times sit-to-stand (on force platform) x x x x

Timed up-and-go test x x x x

Objective life-space (1-week GPS) x x x x

Self-reported life-space (UAB LSA) x x x x

Reasons for going outdoors, transportation use, need for
assistance (digital map-based tool)

x x x x

Availability and usage of a private car (incl. Pre-stroke) x x x x

Further measures

Physical activity (1-week accelerometry) x x x x

Active Ageing (UJACAS) x x x x

Fall-history (3-month recall) (incl. Pre-stroke) x x x x

Fall-related self-efficacy (FES-I) x x x x

Retinal vessel analysis x x

Rehab measures x x x x

Medical events x x x x

MoCA Montreal Cognitive Assessment; NIHSS National Institute of Health Stroke Scale; mRS Modified Rankin Scale; SCQ Self-Administered Comorbidity
Questionnaire; GDS-15 15-Item Geriatric Depression Scale; SSQoL Stroke-Specific Quality of Life scale; GPS Global Positioning System; UAB LSA University
of Alabama at Birmingham Study of Aging Life-Space Assessment; UJACAS University of Jyvaskyla Active Ageing Scale; FES-I Falls
Efficacy Scale-International
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position by using a leg press device that allows testing
clinical populations with motor impairments safely (DD
System Elite, Dynamic Devices AG, Zürich, Switzerland).
As a measure of muscle power, the maximum rate of
force development during a concentric action (i.e. a sim-
ulated chair-rise) will be used [72]. The device will allow
us to measure both legs separately and to quantify the
potential asymmetry between legs as a potential risk fac-
tor for falls [73]. Studies suggest that leg power is even
more predictive of general functional performance of
older adults than leg strength [72, 74, 75]. Tests will be
performed after a period of familiarisation and warm-up.
It has been shown in various studies that testing of
muscle power (and even ballistic power training) [76,
77] can be performed safely in patients with stroke [76,
78], in other clinical populations [79], and in mobility-
limited [72], and healthy older adults [75, 80].

Balance
Balance will be assessed by using a force platform (Leo-
nardo Mechanograph, Novotec Medical GmbH, Pforz-
heim, Germany) [81]. The following parameters of
postural sway while standing quietly in an upright pos-
ition with knees slightly flexed (~ 10°), hands at the side
and gaze straight ahead for 10 s in various foot positions
(side-by-side, semi-tandem, and tandem position) will be
used: 95% ellipse sway area, and path length [82, 83].

Functional tests
The following two functional tests will be performed: 5
times sit-to stand (on the Leonardo Mechanograph force
platform), a general test of lower body strength [84, 85]
and timed up-and-go test, a measure of general mobility
[86–88].

Life-space
Immediately after each study centre visit, participants’
location will be continuously recorded by GPS (uTrail,
CDD Ltd., Athens, Greece) over a 1-week period. A pre-
viously suggested approach to derive an area-related
summary measure of life-space (Standard Deviational El-
lipse) will be used [89, 90]. Additionally, the University
of Alabama at Birmingham (UAB) Study of Aging Life-
space Assessment (LSA) questionnaire will be used. The
UAB-LSA assesses the extent of an individual’s move-
ment within the past 4 weeks, categorized into 5 spatial
levels, ranging from the participant’s bedroom to places
outside the participants’ home town, by self-report [10].

Reasons for going outdoors, transportation use and need
for assistance
In order to collect additional qualitative information on
visited locations, including purpose (within the 6 cat-
egories work, groceries, social contacts, medical

institutions, culture/religion/education and free time),
visit frequency, transportation mode, assistance needed,
and distances covered, a questionnaire tool that is based
on digital maps and usually referred to as ‘Public Partici-
pation Geographic Information System’ (PPGIS) [91] or
‘SoftGIS’ [41, 42] will be used (T0–3). Furthermore, pre-
stroke (T0) and current (T0–3) availability and usage of a
private car will be assessed by self-report.

Further measures

Habitual physical activity Physical activity will be
assessed at T0–3 by using a wrist-worn triaxial acceler-
ometer (GeneActiv, Activinsights Ltd., Kimbolton, UK)
[92]. Participants will be asked to wear the bracelet con-
tinuously over a 1-week period.

Active ageing Furthermore, “active ageing” will be
assessed at T0–3 by self-report by using the University of
Jyvaskyla Active Ageing Scale [93]. This scale intends to
quantify “the striving for elements of well-being through
activities relating to a person’s goals, functional capaci-
ties and opportunities” [93] (p. 1003).

Falls Falls are a known consequence of mobility prob-
lems in patients after stroke [94, 95]. The following fall-
related measures will therefore complement the assess-
ments: pre-stroke (T0) and current (T0–3) frequency of
falls (3-month recall) [96], and fall-related self-efficacy
(Falls Efficacy Scale–International Version) (T0–3) [97].

Retinal vessel analysis Retinal vessel analysis is a non-
invasive technique that allows examination of the retinal
microcirculation [98]. Retinal vessels share common
functional, morphological and embryological characteris-
tics with the cerebrovascular bed. They represent a part
of the microvasculature that is affected early in the
process of cerebrovascular small vessel disease [99–101].
In the population-based Rotterdam Study, for example,
wider retinal venular diameters were associated with in-
creased risk for stroke and cerebral infarction [95]. Ret-
inal vessel diameters will be measured at T1 and T3. The
Static Retinal Vessel Analyzer (SVA-T, Imedos Systems
UG, Jena, Germany) will be used to take three images of
each eye from each participant with a fundus camera
(Topcon TRC NW8), allowing a non-invasive assess-
ment of retinal vessel diameters without mydriasis. Im-
ages will be analysed by a semi-automated software
(Visualis 2.8, Imedos Systems UG) at an angle of 45°
with the optic disc at centre. Retinal vessel diameters are
measured in ring zones 0.5–1 disc-diameter away from
the optic disc margin. Central retinal arteriolar equiva-
lent (CRAE) and central retinal venular equivalent
(CRVE) are averaged by the Hubbard formula [102].
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Medical events Potential medical events (e.g. recurrent
strokes), other relevant medical issues, as well as medi-
cation intake will be recorded (T0–3).

Ethical considerations
The study is fully observational. The performed mea-
surements mainly include or simulate everyday tasks
that do not involve an increased cardiovascular or mus-
culoskeletal risk compared to everyday activity. All per-
formance tests have been used safely in previous studies
with chronically diseased participants (including stroke)
[60, 103] and will be conducted by specifically trained
assessors. The assessor will constantly supervise the par-
ticipant and accompany the participant during tests with
a potential risk of falling. Data generation, transmission,
storage and analysis of health-related personal data will
follow the current Swiss legal requirements for data
protection.

Statistical analysis
Patients’ characteristics will be analysed descriptively.
Measures of mobility (LEPF and life-space) will be ana-
lysed (descriptive statistics and 95% confidence intervals)
for the total sample and stratified by predefined sub-
groups (based on demographic characteristics and stroke
severity). Linear mixed effects models will be used to
model the trajectories of mobility measures for the total
sample and for predefined subgroups [104, 105]. Time
will be modelled as a discrete variable indicating the
time points (T0, T1, T2, T3). Comparison of trajectories
between subgroups will be assessed using likelihood ra-
tio tests [106]. Tukey post-hoc tests will be applied to

compare subgroups at specific time points. Diagnostic
residual plots will be applied to assess the model fit.
Measures of mobility will be transformed (e.g., log) in
the case of inadequate model fits.
As an exploratory analysis, growth mixture models

(GMMs) will be used to identify relevant subgroups with
different trajectories [104, 107–109]. GMMs identify
multiple latent classes that have similar trajectories over
time. The number of latent classes to be extracted must
be set in advance. We will fit GMMs with two to five
classes. The model selection will be done based on the
lowest value of the Akaike Information Criterion (AIC)
and lowest value of the Bayesian Information Criterion
(BIC) [108]. After identifying relevant subgroups with
different trajectories using GMMs, multinomial logistic
regression models will be used to identify predictors of
group-membership [110].
As a secondary analysis, we will use linear mixed effect

models to test whether changes in LEPF parameters are
associated with changes in life-space [111]. Specifically,
the changes in life-space between each time point serves
as the dependent variable and the changes in LEPF pa-
rameters serve as predictors.
Data from the map-based tool including reasons for

going outdoors, transportation use, distances covered
and assistance needed will be analysed descriptively (fre-
quencies and proportions with 95% confidence intervals)
by subgroups of age, sex, stroke severity, housing/living
situation, and residential area.
We set the significance level at 5% and will use two-

sided tests throughout our analyses.

Fig. 2 Required sample sizes for a statistical power of 80% assuming various correlations between time points within subjects
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Sample size calculation
We used simulations to estimate the required sample
size for a linear mixed effects model assessing the trajec-
tory of 10 m habitual walking speed over 4 time points
[112]. Specifically, we powered the analysis to detect an
overall trend over time as well as clinically significant
differences of 0.14 m/s between each adjacent time point
[13, 113, 114]. Based on prior studies, the standard devi-
ation of the walking speed was assumed to be 0.3 m/s at
each time point [13, 66, 113–116]. We found no infor-
mation in the literature about the correlation of walking
speed within each subject between time points. Accord-
ingly, we performed multiple simulations for correlations
between time points of 0.2, 0.5, 0.6, and 0.7, while keep-
ing all other parameters fixed. For each assumed correl-
ation, a simulation with 5000 repetitions to assure
robust estimation was performed to estimate the re-
quired sample size. All hypothesis tests were two-sided
with a significance level of 5% while the statistical power
was set at 80%. We inflated the required sample sizes to
adjust for an anticipated dropout rate of 5% between
each time point.
Assuming a correlation of 0.2 of walking speed be-

tween time points, 117 subjects were needed to achieve
the required power of 80%. The corresponding sample
sizes were 74, 59 and 45 for correlations of 0.5, 0.6 and
0.7, respectively (Fig. 2). We think that a correlation of
at least 0.6 is plausible for these data. Thus, we decided
to at least recruit 59 subjects.

Discussion
Regaining mobility is a primary rehabilitation goal of pa-
tients after stroke and a comprehensive and detailed
knowledge of functional deficits and their recovery pat-
terns will enable the planning of targeted and correctly
timed rehabilitation measures ranging from targeted ex-
ercise to the provision of aids or adaptations of the built
environment. The integration of both aspects of mobil-
ity, LEPF and life-space, will provide the opportunity to
define individualized and motivating patient-oriented
goals and potentially booster the efforts of therapists by
self-encouragement of the patient, potentially leading to
an increase of quality of life and participation following
stroke. The low cost and high availability of GPS and
portable sensor technology as well as the fact that mea-
surements mostly rely on unsupervised procedures may
facilitate the future use of these measures by researchers
and clinicians.
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